
AKKA –
Distributed 
Systems Using 
HTTP



Guessing Game Example
• Simple game: Guess a number between 1 and 100

• Game responds with:
 Correct
 Too High
 Too Low
 Invalid Request



Game Server
static void startGameServer (Route route, ActorSystem<?> system) {

CompletionStage <ServerBinding> futureBinding =

Http.get (system).newServerAt ("localhost", 8080).bind (route);

futureBinding.whenComplete ((binding, exception) -> {

if (binding != null) {

System.out.println ("Server online at http://localhost:8080");

} else if (exception != null) {

System.err.println ("Error starting server: " + exception.getMessage ());

}

});

}



New Constructs
• CompletionStage

 Similar to a Future, but with the possibility of separate stages which could 
allow for intermediate results

• Http.get (ActorSystem).newServerAt (address, port).bind (Route)
 Creates a new HTTP server “actor” with the AKKA actor system
 Bound to the specified address and port
 Using the specified Route (more  on routes later)

• futureBinding.whenComplete ((binding, exception) -> lambda);
 Method to be executed when the server has completed binding to the 

specified port



Server Creation
public static void main (String[] args) {

Behavior <NotUsed> baseBehavior = Behaviors.setup (context -> {

GuessRoutes routes = new GuessRoutes ();

startGameServer (routes.guessRoutes(), context.getSystem ());

return Behaviors.empty ();

});

ActorSystem.create (baseBehavior, "GuessingGameServer");

}

Behavior to 
create the 

GameServer

Initialize the 
system



Guess Behavior - Stateless
static String guessNumber (int guess, int answer) {

if (guess == answer) return WIN;

else if (guess < answer) return LOW;

else if (guess > answer) return HIGH;

else return ERROR;

}

Game Logic



Routing
public class GuessRoutes {

public Route guessRoutes () {

return pathSingleSlash (() ->

post (() ->

parameter ("guess", guess ->

complete (Guess.guessNumber (

Integer.parseInt (guess), 20))

)));

}

}
Lambda’s can quickly lead to 

“parens hell”, be careful

Create a simple Route with 
only one possible path

Specify the result 
of the path



Routes
• A Route is used to specify how to parse the URL/data provided as 

part of any HTTP message

• There are many directives that can be used to break the data up 
into manageable pieces

• The ones used in the example are:
 pathSingleSlash(action) – matches a URL that starts at the root level 

(127.0.0.1/)
 post(action) – matches only a POST HTTP message
 parameter(value_name, action) – checks the message for a specific 

data item and then performs the action on the value of that item

• Example Message – 127.0.0.1:8080/?guess=50



Directives
• There a many directives, review the AKKA documentation for a 

complete list.

Predefined Directives (alphabetically) • 
Akka HTTP

• You can also make your own, though that is beyond what we will 
do in this course.



Code Walkthrough

Run the example application and ask questions

POST http://127.0.0.1:8080/?guess=50 HTTP/1.1

Message Used to Send a Guess



Refactoring
• While the current game works, it is using the AKKA actor system 

in name only

• What do you feel is missing?



Refactoring
• While the current game works, it is using the AKKA actor system 

in name only

• What do you feel is missing?

• There are no messages

• Actors aren’t really used

• Refactor the system to use messages between the actors



GameServer Refactor

public static void main (String[] args) {

Behavior <NotUsed> baseBehavior = Behaviors.setup (context -> {

ActorRef<Guess.Command> guessActor =

context.spawn (Guess.create(), "Guess");

GuessRoutes routes = new GuessRoutes (context.getSystem(), guessActor);

startGameServer (routes.guessRoutes(), context.getSystem ());

return Behaviors.empty();

});

ActorSystem.create (baseBehavior, "GuessingGameServer");

}

Create an Actor to manage 
to manage the guess



Guess Actor – State and Construction

public class Guess extends AbstractBehavior <Guess.Command> {

sealed interface Command {}

public final static record GuessResult (String result) {}

public final static record GuessNumber (int guess, ActorRef<GuessResult> replyTo) implements Command {};

private static final int MAX_ROUNDS = 6;
private static final String LOSE = "Out of turns";
private static final String WIN = "You guessed the number!";
private static final String HIGH = "Your guess was too high";
private static final String LOW = "Your guess was too low";
private static final String ERROR = "Invalid Guess";
private final int MIN = 1;
private final int MAX = 100;
private final int rounds;
private final int answer;

private Guess (ActorContext<Command> context) {
super(context);
rounds = 0;
answer = new Random ().nextInt (MIN, MAX);

}

Create an interface – why?
record creates a data only class



Guess Actor – Behavior and Receive

public static Behavior<Command> create() {

return Behaviors.setup (Guess::new);

}

@Override

public Receive<Command> createReceive() {

return newReceiveBuilder()

.onMessage (GuessNumber.class, this::onGuessNumber)

.build ();

}

Standard Actor setup we 
all know and love



Guess Actor – Guess Behavior

private Behavior<Command> onGuessNumber (GuessNumber guess) {
GuessResult result;
if (guess.guess() == answer) {

result = new GuessResult (WIN);
}
else if (guess.guess() < answer) {

result = new GuessResult (LOW);
}
else if (guess.guess() > answer) {

result = new GuessResult (HIGH);
}
else {

result = new GuessResult (ERROR);
}

guess.replyTo ().tell (result);

return this;
}

Same logic, just in the 
Behavior now

Send the result to the actor 
that sent the message



GuessRoutes – State and Construction

public class GuessRoutes {

private final ActorRef<Guess.Command> guessActor;

private final Duration askTimeout;

private final Scheduler scheduler;

public GuessRoutes (ActorSystem<?> system, 

ActorRef <Guess.Command> guessActor) {

this.guessActor = guessActor;

askTimeout = Duration.ofSeconds (5);

scheduler = system.scheduler();

}

Actor that message will be sent to

The ActorSystem scheduler can be 
used to run tasks in a separate thread



GuessRoutes - AskPattern

private CompletionStage<Guess.GuessResult> guess (int number) {

return AskPattern.ask (guessActor, ref ->

new Guess.GuessNumber(number, ref), askTimeout, scheduler);

}

• The AskPattern is a standard way to manage synchronous requests, most often 
with entities that are outside of the actor system.

• The pattern create a new actor (ref) that will receive the response from a message 
(Guess.GuessNumber) being sent to a given actor (guessActor)

• The new actor is wrapped in a CompletionStage (Future for actors). If the new 
actor (ref) receives a response in the timeout window, the CompletionStage will 
return the result.



GuessRoutes - Routes

public Route guessRoutes () {

return

pathSingleSlash (() ->

post (() ->

parameter ("guess", guess ->

onSuccess (guess (Integer.parseInt (guess)), 

guessResult -> {

return complete (guessResult.result());

}))));

}

Root Path

Only POST Messages
?guess=number

Create a new guess which 
waits for a response

Return response



Code Walkthrough

Run the example application and ask 
questions

POST http://127.0.0.1:8080/?guess=50 HTTP/1.1

Message Used to Send a Guess



Refactoring
• Everything works, but is there anything that feels off or odd?



Refactoring
• Everything works, but is there anything that feels off or odd?

• Using get and post via the URL feel outdated and potentially 
insecure

• All information is received as strings

• Sending multiple pieces of data will be cumbersome

• Refactor the system to send and receive JSON Messages



Guess - Refactor

public final static record AGuess (int guess) {}

Add a record that contains all the 
data in a guess



GuessRoute - Refactor
public Route guessRoutes () {

return

pathSingleSlash (() ->

post (() ->

entity (Jackson.unmarshaller (AGuess.class), guess ->

onSuccess (guess (guess.guess()), guessResult -> {

return complete (StatusCodes.OK, guessResult, 

Jackson.marshaller());

}))));

}

Jackson.unmarshaller turns JSAON 
data into and instance of AGuess

Jackson.marshaller turns 
guessResult into a JSON message



Code Walkthrough

Run the example application and ask 
questions

POST http://127.0.0.1:8080/ HTTP/1.1

content-type: application/json

{"guess": 50}

Message Used to Send a Guess


